\(\int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx\) [394]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 133 \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {2 b^2 B \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d}+\frac {2 B \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b B \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}} \]

[Out]

2*b*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2/3*B*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+2*b^2*B*(cos(1/2*d*x+1/2*c
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/a^2/(a+b)/d+2/3*B*sin(d*x+c)/a/
d/cos(d*x+c)^(3/2)-2*b*B*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {21, 2881, 3134, 3138, 2719, 3081, 2720, 2884} \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\frac {2 b^2 B \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 d (a+b)}+\frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {2 b B \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {2 B \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(a*B + b*B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])^2),x]

[Out]

(2*b*B*EllipticE[(c + d*x)/2, 2])/(a^2*d) + (2*B*EllipticF[(c + d*x)/2, 2])/(3*a*d) + (2*b^2*B*EllipticPi[(2*b
)/(a + b), (c + d*x)/2, 2])/(a^2*(a + b)*d) + (2*B*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) - (2*b*B*Sin[c + d
*x])/(a^2*d*Sqrt[Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2881

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])
^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = B \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx \\ & = \frac {2 B \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(2 B) \int \frac {-\frac {3 b}{2}+\frac {1}{2} a \cos (c+d x)+\frac {1}{2} b \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx}{3 a} \\ & = \frac {2 B \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b B \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}+\frac {(4 B) \int \frac {\frac {1}{4} \left (a^2+3 b^2\right )+a b \cos (c+d x)+\frac {3}{4} b^2 \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 a^2} \\ & = \frac {2 B \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b B \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {(4 B) \int \frac {-\frac {1}{4} b \left (a^2+3 b^2\right )-\frac {1}{4} a b^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 a^2 b}+\frac {(b B) \int \sqrt {\cos (c+d x)} \, dx}{a^2} \\ & = \frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 B \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b B \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}+\frac {B \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a}+\frac {\left (b^2 B\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a^2} \\ & = \frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {2 b^2 B \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d}+\frac {2 B \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b B \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.61 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.59 \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\frac {B \left (\frac {2 \left (2 a^2+9 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+8 a \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )+\frac {4 (a-3 b \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {6 \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a \sqrt {\sin ^2(c+d x)}}\right )}{6 a^2 d} \]

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])^2),x]

[Out]

(B*((2*(2*a^2 + 9*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + 8*a*(2*EllipticF[(c + d*x)/2, 2] -
 (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)) + (4*(a - 3*b*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*
x]^(3/2) + (6*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*
x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*Sqrt[Sin[c + d
*x]^2])))/(6*a^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(424\) vs. \(2(203)=406\).

Time = 6.31 (sec) , antiderivative size = 425, normalized size of antiderivative = 3.20

method result size
default \(-\frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, B \left (\frac {-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}}{a}-\frac {b \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}-\frac {2 b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a^{2} \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(425\)

[In]

int((B*a+b*B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)

[Out]

-2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*B*(1/a*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
)))-1/a^2*b/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El
lipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-2*b^3/a^2/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2
*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2
^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))^2),x)

[Out]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))^2), x)